
Objectives 5

OO Concepts



RZQ22/10/09 2

Encapsulation, IS-A, HAS-A 

(Objective 5.1)

� Encapsulation helps hide implementation 

behind an interface (or API).

� Encapsulated code has two features:

� Instance variables are kept protected (usually 

with the private modifier).

� Getter and setter methods provide access to 

instance variables.

� IS-A refers to inheritance.



RZQ22/10/09 3

Encapsulation, IS-A, HAS-A 

(Objective 5.1) [contd.]

� IS-A is expressed with the keyword extends.

� IS-A, "inherits from," and "is a subtype of" 

are all equivalent expressions.

� HAS-A means an instance of one class "has a" 

reference to an instance of another class.



RZQ22/10/09 4

Coupling and Cohesion 

(Objective 5.1)

� Coupling refers to the degree to which one class 

knows about or uses members of another class.

� Loose coupling is the desirable state of having 

classes that are well encapsulated, minimize 

references to each other, and limit the breadth of 

API usage.

� Tight coupling is the undesirable state of having 

classes that break the rules of loose coupling.



RZQ22/10/09 5

Coupling and Cohesion 

(Objective 5.1) [contd.]

� Cohesion refers to the degree in which a 
class has a single, well-defined role or 
responsibility.

� High cohesion is the desirable state of a class 
whose members support a single, well-
focused role or responsibility.

� Low cohesion is the undesirable state of a 
class whose members support multiple, 
unfocused roles or responsibilities.



RZQ22/10/09 6

Polymorphism 

(Objective 5.2)

� Polymorphism means ‘many forms'.

� A reference variable is always of a single, 

unchangeable type, but it can refer to a 

subtype object.

� A single object can be referred to by 

reference variables of many different 

types—as long as they are the same type or 

a supertype of the object.



RZQ22/10/09 7

Polymorphism 

(Objective 5.2) [contd.]

� The reference variable's type (not the 

object's type), determines which methods 

can be called!

� Polymorphic method invocations apply only 

to overridden instance methods.



RZQ22/10/09 8

Reference Variable Casting 

(Objective 5.2)

� There are two types of reference variable casting: 
downcasting and upcasting.

� Downcasting: If you have a reference variable that refers to a 
subtype object, you can assign it to a reference variable of the
subtype. You must make an explicit cast to do this, and the 
result is that you can access the subtype's members with this 
new reference variable.

� Upcasting: You can assign a reference variable to a supertype
reference variable explicitly or implicitly. This is an inherently 
safe operation because the assignment restricts the access 
capabilities of the new variable.



RZQ22/10/09 9

Overriding and Overloading 

(Objectives 1.5 and 5.4)

� Methods can be overridden or overloaded; 

constructors can be overloaded but not 

overridden.

� Abstract methods must be overridden by the 

first concrete (nonabstract) subclass.

� final methods cannot be overridden.



RZQ22/10/09 10

Overriding and Overloading 

(Objectives 1.5 and 5.4) [contd.]

� With respect to the method it overrides, the 
overriding method

� Must have the same argument list

� Must have the same return type, except that as of Java 5, 
the return type can be a subclass—this is known as a 
covariant return.

� Must not have a more restrictive access modifier

� May have a less restrictive access modifier

� Must not throw new or broader checked exceptions

� May throw fewer or narrower checked exceptions, or any 
unchecked exception.



RZQ22/10/09 11

Overriding and Overloading 

(Objectives 1.5 and 5.4) [contd.]

� Only inherited methods may be overridden, and 
remember that private methods are not inherited.

� A subclass uses super.overriddenMethodName() to 
call the superclass version of an overridden method.

� Overloading means reusing amethod name, but 
with different arguments.

� Overloaded methods
� Must have different argument lists

� May have different return types, if argument lists are also 
different

� May have different access modifiers

� May throw different exceptions



RZQ22/10/09 12

Overriding and Overloading 

(Objectives 1.5 and 5.4) [contd.]

� Methods from a superclass can be 
overloaded in a subclass.

� Polymorphism applies to overriding, not to 
overloading

� Object type (not the reference variable's 
type), determines which overridden method 
is used at runtime.

� Reference type determines which 
overloaded method will be used at compile 
time.



RZQ22/10/09 13

Inheritance 

(Objective 5.5)

� Inheritance is a mechanism that allows a class to be 

a subclass of a superclass, and thereby inherit 

variables and methods of the superclass.

� Inheritance is a key concept that underlies IS-A, 

polymorphism, overriding, overloading, and casting.

� All classes (except class Object), are subclasses of 

type Object, and therefore they inherit Object's 

methods.


