Objectives 5

OO0 Concepts



Encapsulation, IS-A, HAS-A
(Objective 5.1)

RzZQ22/10/09

O Encapsulation helps hide implementation
behind an interface (or API).

O Encapsulated code has two features:

Instance variables are kept protected (usually
with the private modifier).

Getter and setter methods provide access to
instance variables.

O IS-A refers to inheritance.



Encapsulation, IS-A, HAS-A
(Objective 5.1) [contd.]

RzZQ22/10/09

O IS-A is expressed with the keyword extends.

O IS-A, "inherits from," and "is a subtype of"
are all equivalent expressions.

O HAS-A means an instance of one class "has a'
reference to an instance of another class.



Coupling and Cohesion
(Objective 5.1)

RzZQ22/10/09

O Coupling refers to the degree to which one class
knows about or uses members of another class.

O Loose coupling is the desirable state of having
classes that are well encapsulated, minimize
references to each other, and limit the breadth of
APl usage.

O Tight coupling is the undesirable state of having
classes that break the rules of loose coupling.



Coupling and Cohesion
(Objective 5.1) [contd.]

RzZQ22/10/09

O Cohesion refers to the degree in which a
class has a single, well-defined role or
responsibility.

O High cohesion is the desirable state of a class

whose members support a single, well-
focused role or responsibility.

O Low cohesion is the undesirable state of a
class whose members support multiple,
unfocused roles or responsibilities.



Polymorphism
(Objective 5.2)

RzZQ22/10/09

O Polymorphism means ‘many forms'.

O A reference variable is always of a single,
unchangeable type, but it can refer to a
subtype object.

O A single object can be referred to by
reference variables of many different
types—as long as they are the same type or
a supertype of the object.



Polymorphism
(Objective 5.2) [contd.]

O The reference variable's type (not the
object's type), determines which methods
can be called!

O Polymorphic method invocations apply only
to overridden instance methods.

RzZQ22/10/09



Reference Variable Casting
(Objective 5.2)

O There are two types of reference variable casting:
downcasting and upcasting.

O Downcasting: If you have a reference variable that refers to a
subtype object, you can assign it to a reference variable of the
subtype. You must make an explicit cast to do this, and the
result is that you can access the subtype's members with this
new reference variable.

O Upcasting: You can assign a reference variable to a supertype
reference variable explicitly or implicitly. This is an inherently
safe operation because the assignment restricts the access
capabilities of the new variable.

RzZQ22/10/09 8



Overriding and Overloading
(Objectives 1.5 and 5.4)

RzZQ22/10/09

o Methods can be overridden or overloaded;
constructors can be overloaded but not
overridden.

O Abstract methods must be overridden by the
first concrete (nonabstract) subclass.

O final methods cannot be overridden.



Overriding and Overloading
(Objectives 1.5 and 5.4) [contd.]

O With respect to the method it overrides, the
overriding method
Must have the same argument list

Must have the same return type, except that as of Java 5,
the return type can be a subclass—this is known as a
covariant return.

Must not have a more restrictive access modifier
May have a less restrictive access modifier
Must not throw new or broader checked exceptions

May throw fewer or narrower checked exceptions, or any
unchecked exception.

RzZQ22/10/09 10



Overriding and Overloading
(Objectives 1.5 and 5.4) [contd.]

RzZQ22/10/09

O Only inherited methods may be overridden, and
remember that private methods are not inherited.

O A subclass uses super.overriddenMethodName() to

call the superclass version of an overridden method.

O Overloading means reusing amethod name, but
with different arguments.

O Overloaded methods
Must have different argument lists

May have different return types, if argument lists are also
different

May have different access modifiers
May throw different exceptions

11



Overriding and Overloading
(Objectives 1.5 and 5.4) [contd.]

RzZQ22/10/09

O Methods from a superclass can be
overloaded in a subclass.

O Polymorphism applies to overriding, not to
overloading

O Object type (not the reference variable's
type), determines which overridden method
is used at runtime.

O Reference type determines which
overloaded method will be used at compile
time.

12



Inheritance
(Objective 5.5)

RzZQ22/10/09

O Inheritance is a mechanism that allows a class to be
a subclass of a superclass, and thereby inherit
variables and methods of the superclass.

O Inheritance is a key concept that underlies IS-A,
polymorphism, overriding, overloading, and casting.

O All classes (except class Object), are subclasses of
type Object, and therefore they inherit Object's
methods.

13



